Liouville Action for Harmonic Diffeomorphisms
نویسندگان
چکیده
In this paper, we introduce a Liouville action for harmonic diffeomorphism from compact Riemann surface to hyperbolic of genus $g\ge 2$. We derive the variational formula diffeomorphisms when source surfaces vary with fixed target surface.
منابع مشابه
Liouville theorems for harmonic maps
Recently there has been much interest in the Liouville type theorems for harmonic maps. For a detailed survey and progress in this direction, see the works by Hildebrandt [4], Eells and Lemaire [2]. Here we would like to mention that for all known results, the conditions on the harmonic maps can be divided into two kinds. The first of these conditions concerns the finiteness of the energy of th...
متن کاملA Liouville theorem for harmonic maps and
A Liouville theorem is proved which generalizes the papers of Hu, MP].
متن کاملLiouville Theorems for Dirac - Harmonic Maps
We prove Liouville theorems for Dirac-harmonic maps from the Euclidean space Rn, the hyperbolic space Hn and a Riemannian manifold Sn (n ≥ 3) with the Schwarzschild metric to any Riemannian manifold N .
متن کاملHarmonic diffeomorphisms, minimizing harmonic maps and rotational symmetry
© Foundation Compositio Mathematica, 1989, tous droits réservés. L’accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier ...
متن کاملRotationally Symmetric Harmonic Diffeomorphisms between Surfaces
and Applied Analysis 3 We will prove this theorem by contradiction. The idea is similar to the proof of Theorem 1. Suppose ψ is a rotationally symmetric harmonic diffeomorphism from P(a) onto D∗ with the metric σ 2 d|u|, with the form ψ = g(r)e, then substituting ψ, σ 2 to u, σ in (2), respectively, we can get
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry Integrability and Geometry-methods and Applications
سال: 2021
ISSN: ['1815-0659']
DOI: https://doi.org/10.3842/sigma.2021.097